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Abstract—Anti-plane strain crack problems in radially inhomogeneous materials are considered ;
the model is used as a simple analogy with a non-linear power law material. Both an asymptotic
and a rigorous analysis are used to determine the crack tip behaviour. A combined Mellin transform-
difference equation method is used to solve the problem of a crack at an interface between a uniform
elastic medium and a radially inhomogeneous material. These rigorous results are compared with
asymptotic non-linear bimaterial results of Champion and Atkinson [Proc. R. Soc. Lond. A429,
247-257 (1990)]. Some of the crack tip behaviour associated with the non-linear power law material
is shown to be due to the apparent modulus tending to zero or infinity at the crack tip. Problems
of cracks at an arbitrary angle to the interface can also be considered using this approach. We
briefly consider such cases. To emphasize further similarities between the radially inhomogeneous
and the non-linear material we derive some integral invariants.

1. INTRODUCTION

Recently, much attention has been given to the field associated with a crack at an interface
between materials with non-linear stress strain laws. It has been shown by Champion and
Atkinson (1990) that for power law materials all the energy flow into the crack tip goes
into the part of the crack tip lying in the material with the largest hardening exponent. The
analysis of Champion and Atkinson is asymptotic. By considering expansions at the crack
tip in each region, and matching across the interface ahead of the crack they found the
stress singularities are identical in each material. The stress singularity corresponds to that
for a crack in a homogeneous material with hardening exponent equal to the maximum
hardening exponent of the two materials (the smaller n in the notation used here). Dis-
placements near the crack tip were found to be of different orders in the two materials.

Here we give both a rigorous and asymptotic analysis of an anti-plane strain model
problem where the elastic modulus in one medium tends to infinity, or zero, as one
approaches the crack tip. This is analogous to the situation in the corresponding non-linear
problem where the stress—strain law takes the form ¢ ~ ¢", 0 < n < 0. In this non-linear
case a singular strain field will produce an elastic modulus u(¢) [defined by 6 = u(e)e], given
as u(e) = &', 0 < n < co. For a crack tip in a homogeneous material the energy density
W ~ O(1/r), and since W = j'ode ~ g"*1 the strain ¢ ~ O(r~ "®* V) at the crack tip. Thus,
if 0 < n < 1, the analogy is an elastic material with a modulus tending to zero as r tends
to the crack tip; if » > 1, the analogy is an elastic material with a modulus tending to
infinity at the crack tip. When n = 1 the stress—strain law corresponds to a linear homo-
geneous material. Note Champion and Atkinson (1990) write the stress—strain relations in
the form y = at™ (y is strain and 7 stress) so the exponent n; used there corresponds to 1/n
used here. The modulus, u(e), varies with respect to both r, radial distance from the crack
tip, and 0, angle subtended by a point relative to the fracture plane. In our inhomogeneous
model problem we allow the modulus to vary only with respect to r.
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Fig. 1. Bimaterial interface crack: medium 1. Elastic modulus = 7%, medium 2. Elastic
modulus = y,.

f

Let us briefly consider cracks in a material whose shear modulus varies as r* in a polar
coordinate system centered on the crack tip, the governing equation is V- r*V¢ = 0, where
¢ is the displacement. If the crack faces (6 = +x, for all r) are stress free then
¢ ~ ricos (A(A+a))"*(r—@)) at the crack tip. The parameter i is defined by
A= Y(—a+(@®+1)"? for 1 > 0, i.e. non-singular and vanishing crack tip displacements.
Other eigensolutions can be found for differing values of A, however these produce solutions
for the stresses with no singularity or are unphysically singular as the crack tip is approached.
The stress at the crack tip is of order 7***~ !, from this we determine that the range of values
0 < a < 3/4 corresponds to materials whose modulus tends to zero at singular crack tips,
and a < 0 corresponds to materials whose moduli tend to infinity at singular crack tips.

In the non-linear power law material case the shear modulus is |V@|*~ . Here we know
the strain, ¢ ~ r~ Y+ YH(0) and hence the displacement ¢ ~ r'* G(6) at the crack tip.
The G(8) and H(#) are unknown functions of 6. The range 0 < » < 1 corresponds to the
range0 <a < 3/4,andn>1toa < 0.

For comparison with the non-linear problem we consider two problems, a homo-
geneous elastic material (shear modulus u,) bonded to a radially inhomogeneous elastic
material (shear modulus u,7*), Fig. 1, and an elastic material bonded to a non-linear power
law material obeying the law V- (|V¢,|"~'V¢ ) = 0, Fig. 2, where the ¢, are displacements
in the respective half spaces. The first problem is treated rigorously in this paper using
Mellin transform and difference equation techniques. The first problem is also considered
using the same asymptotic methods as used in the non-linear problem by Champion and
Atkinson (1990). It is interesting to note the similarity between the non-linear and radially
inhomogeneous problems; in the radially inhomogeneous case we can treat the problem
rigorously and compare it to the other case where the exact non-linear problem is treated
asymptotically. Our aim is to highlight the similarity between the problems and crack tip
results, showing some of the results associated with the non-linear problem are due, at least
in part, to the apparent modulus variation. The asymptotic method used by Champion and
Atkinson (1990) in the non-linear problem is applied here to the inhomogeneous problem,
the Mellin transform-difference equation method is used to verify that the asymptotic
method gives the correct results.

To further compare and contrast the two different problems we briefly consider
invariant integrals which can be derived for the radially inhomogeneous material and the
non-linear power law material.
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Fig. 2. Bimaterial interface crack : medium 1. Stress-strain law, ¢ = d¢" (6 constant), medium 2.
Elastic modulus = u,.
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We also consider cracks at an arbitrary angle to the interface ; in particular we treat a
crack perpendicular to the interface using similar techniques.

2. THE MODEL PROBLEM

Firstly, let us consider « < 0 then in Fig. 1 the radially inhomogeneous material behaves
like a rigid material (infinite modulus) at the crack tip and the singularity in the elastic
material is the usual square root singularity. In the non-linear material the corresponding
behaviour is » > 1. Note, moreover, if we compare the powers of r in the “effective”
modulus, & = [—(n—1)/(n+1)], is the analogy.

Conversely, if we take 0 < a < 3/4 the inhomogeneous material has a zero shear
modulus at the crack tip, this is the somewhat unusual situation of a crack at a free surface,
we consequently might expect a stronger singularity at the crack tip than the usual square
root case. In the non-linear material the corresponding material behaviour is 0 <n < 1,
where again o = [—(n—1)/(n+1)] is the analogy. We repeat that in this analogy the 6
variation of the effective modulus is missing, but it will be of interest to see how the results
of the model problem considered here compares with that of Champion and Atkinson
(1990).

Moreover, it is worth noting in anticipation for the latter case that the non-linear
problem would lead to a weaker singularity in the linear elastic material than the usual
inverse square root singularity. This is explained by Champion and Atkinson (1990) in
terms of the necessity of matching the singular stresses across the unbroken interface ahead
of the crack. They show the stress singularities are the same in each material. The singularity
corresponds to that for a crack in a homogeneous material with hardening exponent equal
to the maximum of the two materials (recall this means the smaller value of n). Consequently
the singularity will be the least singular of the two homogeneous crack tip results.

2.1. An asymptotic approach

We use a similar asymptotic method for the radially inhomogeneous interfacial problem
to that used in the non-linear problem by Champion and Atkinson (1990). We assume the
crack faces on § = 4 are stress free, Fig. 1, then in medium 1

¢~ % B cos (A" (A" +@) X (n—0)), 0<f<m 1
i=1

and in medium 2

a

$2~ 3, B2 cos AP (n+0), —m<8<0. )

i=1

The B{" and B{® are constants. The first of these two equations is the sum of separable
solutions of the crack problems in an infinite inhomogeneous body, the second is the sum
of separable solutions of the elastic problem in an infinite body. Each solution satisfies the
stress free crack face condition. The boundary conditions on 8 = 0 are ¢, = ¢, and

b u361_ 3
U, 00 00
These conditions are used to fix the values of A?’ withj = 1, 2.
The asymptotic procedure, for a < 0, is that we expect the displacement in medium 2,
¢2, to leading order to be

¢, ~ BPr2cos{(0+m) 3)

and we take the displacement in medium 1, ¢, to be
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¢ ~ BVrY cos (A" (A" + ) " (n—0)). 4)

Matching the stresses across the boundary we determine both 4{" and B{", hence we obtain
the leading order behaviour of ¢,. However, the displacements do not match across the
boundary ; we take the next term in the expansion for ¢,, from (2), which we match with
the leading term in ¢ ,. The next term in the expansion of ¢, (1), is determined by matching
the stresses across the boundary, we proceed in this manner to obtain more terms iteratively.
The leading two terms in each expansion are given by

1
¢, ~ BYP (r”zcosi @+

Clpy rP cos((BG—)"*m) cos (G—a)(6+m) +> )
2 GG—a) 7 sin (GG -) ) cos (G~am)
b, ~ B <_ r2e py  cos ((BG—9) "*(x—0))
2w (J(3—2) " sin ((BG—2) Pm)

P2 (u> sin (1= )m) cos (((4—a))"*n)

2 \uy/ cos (1—)m) sin ((J(E—a)) "*n)

My
22 cos (((B— ) (3—2w)) "} (n—6)) )
22" sm((—p(—20) =) T ) ©

+

X

Other eigensolutions can be deduced in a similar manner by replacing (3) with, say,
¢, ~ B{Pr¥?cos (6 + r) and proceeding iteratively. In these cases we would obtain solutions
with stress singularities less singular than the leading order term given by (3). Although if
o < —1 this eigensolution would dominate the second term in (5).

For 0 < a« < 3/4 we expect ¢, to leading order to be

¢1 ~ BVr cos (A" (A" + @) 2 (n— 0)), @)
where 1V = }(—a+ (2*+1)"?), and in medium 2 we take
¢ ~ B?r' cos (A (0 + m)). (8)

Using the same principles as above, we find

b1~ B‘l”(’ " cos (4(n~0))

_ﬂﬂsm( A )”2cosul+a)n cos (A" +a) (41 +20) "*(n—0))

12 10 ¢a) sin(+o)n  cos (AP +a) (A +22)) r) +> ©)

and

Uy 1)
¢y~ "B
2 1o 1

cos (A" + )7 sin (((A" + o) (A +20)) * 1) cos (ALY +20) (m +0)) § ) 10
sin (A" +a)m cos (A" +a) (A" +200)) V21) (A" + 2a) sin (ALY + 2a) ) (10)

A NR( e cos (P +@H0) | g1 o,
A0 4o sin (A{” +a)m Ha

This is the iterative solution starting from the assumption that ¢, has the form (7), other
similar expansions can be derived by taking A" = 3(—a+ (a*+ 2N+ 1)) "?) in (7), or by
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starting with ¢, and assuming A2 = 1,2,.... The leading order behaviour of the stresses
for these alternative series of eigensolutions is less singular than the one we have chosen in
™.

These solutions are arbitrary up to a multiplicative constant. The exact solution
obtained in the next section determines this constant for a particular loading, verifies that
the assumptions made when starting the asymptotic procedure are correct, and that the
resulting expansion is also correct. The full eigensolutions are also determined.

The important point is the different behaviour at the crack tips in the different media
for the different ranges of . In the next section we will determine the exact eigensolutions
and the solution for a crack loaded with an internal stress. We will then compare the
solutions with the asymptotic non-linear results.

2.2. The exact solution
For the mode 3 inhomogeneous case we have the model problem shown in Fig. 1. In
medium 1 the governing equation is
V-(r'Ve) =0 (11
and in medium 2

Vi, = 0. (12)

The ¢, are the displacements in the respective media. The boundary conditions (for a welded
boundary) ahead of the crack are that on 6 = 0

_ 001 09,
o=, xXr 00 - 20 (13)
and on the crack faces
AR aqsz) _ _
xr ( e ) - (W | =m0k =g0), for 0<r<w, (14)

where for simplicity an internal stress g,(r) is taken on the crack faces and y = u,/u,.
The asymptotic problem we considered in the previous section is an eigensolution which
corresponds to g,(r) = 0. We define the Mellin transform of ¢(r, 6) as

O(s,0) = J' rlo(r,0)dr (15)
0
and the inverse transform as
1 c+ico
¢(r,0) = E} Jc_iw D(s, NHr—*ds. (16)

The constant c is determined from subsidiary conditions based on physical considerations
for the particular problem considered. The displacements are required to tend to zero at
the crack tip and, if we take a prescribed internal stress loading for the crack, the dis-
placements tend to zero at infinity. Hence ¢ will lie in a strip 0—§ < R(s) < 045, where §
is real, positive and its precise value is determined from the positions of the singularities of
the transform.

Multiplying the governing equations (11 and 12) by *~ ! and integrating with respect
to r from 0 to o and solving the resulting Mellin transformed equations gives
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D,(s,0) = A,(s) cos s0+ B,(s) sinsf a7

O ,(s+a,0) = A,(s+a)cosyf+ B (s+a) sin 8, (18)

where y2 = s(s+a) and the functions 4,(s), Bi(s) are independent of 6. Let us define g(s)
as the Mellin transform of g(r) ; using the boundary conditions we find ®,(s, §) and ® (s, §)
as

_ g(s)sinsf coss(0+m)
D,(s,0) = oS ST + Ay(s) ossm (19)
§(s) siny0 0—
(D](s+a’8)=‘,g@_sm&y+l42(s+a)w' (20)
AP COS Y1 COS YT

In the case of two homogeneous materials welded together, the function 4,(s) = 0; the
remaining transforms indicate the displacement ahead of the crack is identically zero. For
the problem considered here, i.e. (13) and (14), the zero displacement on the welded
boundary is maintained by the first terms in eqns (19) and (20). These are the terms we
would get by solving each of the mode 3 problems in each half space in the absence of the
other half space. The terms involving A,(s) couple the behaviour of the two half spaces
together.

From the boundary conditions the following difference equation for A4,(s) can be
deduced

ssin s cos YA (s) + A (s + &)y sin yn cos sm = g(s) (Cos ym—cos sm). 2n

We get a formal solution for the difference equation (21) by initially solving a homogeneous
equation

—ssinsncosyn

A¥(s+a) = A¥(s). (22)

Xy Sinym cos 57

The full difference equation (21) is then solved by using this homogeneous solution together
with a particular solution of the different equation which is determined later.
We set

A3(©)= 1X()jsin ",

a subsidiary equation for X(s) is found as
X(s+a) = K(s)X(s), (23)
where the function K(s) is given by

5 8iN 7T COS Y7

K(s) 29

~ ysinyncossn’

K(s) is single valued and has the appropriate convergence properties we require in the strip
—u < R(s) < a, see the Appendix. Hence, we can, via an application of the Plemelj formulae
(Bantsuri, 1973) find a solution valid in the strip —a < R(s) < . This solution is given by
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X(s) =Y(s), 0<R(G)<a (25
X(s) = Y(5)/K(s), —a<R() <. (26)

The function Y{(s) is given by
log Y(s) = 2—1& f w cot (n(ta—s)>log K1) dt @7

which is a Cauchy principal value integral. Note this solution is also valid for « negative.
The method required is described in some detail in the Appendix. The solution to the
homogeneous equation is arbitrary up to a multiplicative function of period a. Outside the
strip the full solutions can be determined by using the original difference equation to deduce
that for 0 < a < 3/4in —(n+1)a < R(s) < —no

AX(s) = 1) ©8)
x7*sin (nsja) [] K(s+ko)
and in na < RE) < (n+ Da
A3(5) = ) 1T Kis— ko). 9)

x7* sin (ms/a) o

If n = 0in (29) the product term is one. The above formulae hold for « negative with minor
changes. The position of the poles and zeros of 4*(s) can be determined using (28) and
(29).

The eigensolution, which we examined using the asymptotic method in the previous
section, is given rigorously by

e CO8s(0+m)
Dy(s,0) = AT o — (30)
_ax cos y(0—m)
®@,(s+a,0) AZ(s+a)mcosyn . (31

The solution for A¥(s) can be used to verify the expansions determined in (5), (6),
(9 and (10) are correct; the inversion contour in (16) is taken so max(—3,
—3(@+(@*+1)V?)) < R(c) < 0. This verifies that the asymptotic procedure used by
Champion and Atkinson (1990) gives the correct solution when applied to the radially
inhomogeneous material. As an aside it also shows an alternative method of solving a
difference equation could be to proceed iteratively and identify the position and order of
the poles and zeros, but this is far less straightforward than the Hilbert approach.

The inhomogeneous difference equation is solved as in Craster and Atkinson
(1994) by determining a particular solution, see also Atkinson (1977). We let
Ay(s) = A¥(s)A(s), where the particular solution is given by the following difference
equation

g(s) (cos yr —cos sm)

o ZAD(s) =
AP (s +8) = AP = G rmcos AT+ o)

=f(9). (32)

The inhomogeneous difference equation (32) is solved by reformulating the difference
equation as a periodic Hilbert problem. The solution follows that outlined in the Appendix
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AP (s) = 2% fw 1) cotn(ta_s) d, 0<REe) <a (33)
AP (s) = 1 JM f(®)cot me=s) di—f(s), —a<R(G) <0 (34)
: 2o —ico o ’ = ’

This solution is only valid in the strip —a < R(s) < «, however, this can be extended to
the whole domain by using the original difference equation (32). The full formal solution
of the difference equation (21) is given by

Ax(s) = A (AY (5) — 49(0)). (33)

The arbitrary function of period one is fixed by using 45”(0) to cancel a simple pole at zero
in A¥(s). This simple pole is not allowed since from physical constraints on the displacements
(e.g. vanishing displacements at infinity) we expect A,(s) to be analytic in a strip, max (— 3,
—a+(@*+ 1)) < R(s) < 0+6 (5 > 0). This analyticity requirement ensures that the
solution decays appropriately at infinity. The solution chosen above can be shown to be
unique using the Riemann—Lebesque theorem, as only this solution satisfies the subsidiary
physical conditions.

Let us for definiteness take the internal loading to be ad(r—1!); the solution for the
uncoupled parts of the displacements in each of the half spaces can be deduced to be

200 &

(—1)"sin <2"2+10)
R T SR

» —(a/2) £ [(@>+(2n+ DDV
(7 (36)

with the plus (minus) sign for r < [ (r > [), and

1/2 0
1+2<f> sin> + -
0 7, { 21
ool )_27W2 o8 1" 20 r
—2\7 sm§+?

These formulae come from evaluating the residue contributions from the poles in the
transforms and are valid for any «, we note from these that in material 1, for 0 < a < 3/4
the exponents in r for the displacements are smaller at the crack tip than those in the elastic
case, locally the moduli tend to zero and we have the situation of a crack at a “free’” surface.
Both of these solutions have the displacement on the fracture plane ahead of the crack
identically zero.

The coupling terms contribute terms which to leading order for small r are ; for « < 0

37

' 1 1 ) fr)ydr
#lr0) ~ — - W(” i) cos (5 (9”))'2% fw sin (o) e+ D) sin Guafa) O
and that for0 <a < 3/4onf =0
1 Y()r~*cossm 1 f"'”“’ f()dr (39)
P2~ — 2 @+ )"y P sins'm 2 Jo i sin (/o) (x — ) sin (rt/e)

with 5" = — J(a+(a*+ 1)) with R(s') -6 < R(¢") < R(s'), J is real and positive. This
identifies the leading order behaviour of the displacements at the crack tips explicitly.
Higher order terms and terms for ¢,(r, 6) follow in a similar manner.
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At this point let us consider what happens in the non-linear material case considered
by Champion and Atkinson (1990). In their asymptotic approach, the displacement ahead
of the crack tip is taken to be zero (to leading order) in the material which has the most
singular behaviour. This choice is made on physical grounds. As the stresses have the same
singular behaviour at the crack tip in each of the half spaces, then if we did not take the
displacement chosen above to be zero, the energy density in the other material would be
unphysically singular. It would also not be possible to match the displacements across
the boundary and still have non-singular displacements at the crack tip. The asymptotic
displacement field is then determined by matching up separable solutions of the governing
equations. The result in the half space with the most singular stress—strain law is that the
strains are more singular as the crack tip is approached and the energy density is con-
centrated in that layer.

In the radially inhomogeneous material considered here, each half space has a part of
the displacement field which can be identified with each half space independent of the other.
The displacements are coupled across the boundary by the terms involving A,(s). Using
the asymptotic and exact solutions derived above we find the radially inhomogeneous
material has similar crack tip behaviour to the non-linear material. In particular the
displacements have similar behaviour for « < 0, 0 < « < 3/4 to the non-linear material in
n < 1,1 < n < o, moreover the stress singularities in each half space are identical and the
same as that for a crack in a single material with the more singular stress—strain law. We
also observe that the half space with the more singular stress-strain law has more singular
strains and the energy density is concentrated in that layer. Hence, we find that some of the
behaviour associated with the non-linear material is due, at least in part, to the apparent
modulus variation and not necessarily due to the non-linearity of stress—strain law. Having
shown the similarity between the crack tip behaviour in this interfacial problem we now
briefly consider some more general problems. We have verified explicitly that the variable
separation method adopted by Champion and Atkinson is correct for the linear material.

2.3. Cracks at an arbitrary angle

For a crack at any angle to an interface between two homogeneous, linear isotropic
half spaces opening under anti-plane strain, we recall the stress singularity is a function of
the angle of inclination of crack to the interface and of the shear moduli of the elastic
materials. The stress is of order r=¢*" at the crack tip, where s is given by the smallest
negative zero (between 0 and — 1) of the expression

sin s(ﬁ— g) sins(ﬂ+ g>+xcos s(ﬂ— g) cos s<ﬁ+ g)

It is of course possible, in theory, to extend the analysis of the previous sections to the
case of cracks at any angle to the interface. Let us take a crack lying in an elastic material
with modulus u, at an angle f to the vertical, i.e. Fig. 3. Mellin transforming the governing
equations we deduce that they become

Q,(s+a) = Al(s+a)cosy<0+ﬂ— g)+B1(s+a) siny(0+/3— g), O<f<nm (40)

@,(5) = Ay(s) cos s(t—0) + By(s) sins(r—0), —n <0< — ’—2’ —B (41)

and

SAS 31:9-C
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R=pgt

Fig. 3. A crack at an angle to the interface.

@4(s) = As(s) cos 56+ Bs(s) sinsh, — g _B<6<0. 42)

Solving the above for continuity of stress and displacement across the interface and with
the crack subjected to an internal stress g,(r), as before, gives us the following system of
difference equations

. n z

s1ns<§ +ﬁ>cosy < ) siny (ﬂ— —) sms<ﬂ+ 5) (A](s)>

sms(ﬂ— —)COS‘)’ ( ) Sm_g(ﬂ— ~>smy’<[3+ g) B,(s)
iy —coss<g +ﬂ>siny<ﬁ—g) cosv<ﬂ— g>coss(g +ﬁ) (Al(s+a)>

_’_—
SHy _siny<ﬁ+g>c053<g_ﬂ> COSS(ﬁ—g>cosy<ﬁ+g> B.(s+a)

_96) (1
_T<1)‘ 43)

The functions A,(s), B,(s), A;(s), B;(s) can be related in a straightforward manner to
A,(s), B,(s). The notation y* = (s(s —«)) "/%. This system of difference equations appears to
be unsolvable using the Hilbert transform technique. The iterative method does work, and
this may show a constructive method of solving such problems. Only in two cases is there
any simplification ; in the limit B = =/2 we recover the difference equation considered in
Section 2.2. The only other degenerate case is § = 0, i.e. the crack is perpendicular to the
interface ; in this case the system uncouples and we obtain the following two difference
equations

NI:I

Nl

ssin s—2~ cos— A W)+ 2y cos ? cos A(s+o) = (44)

—ssm%sm;B (s)+xycos%cos B (s+0a) = g(s). (45)
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It is not clear that these two difference equations can be solved using the Hilbert technique
as the kernel functions are not single valued. However, we can pursue the iterative approach
as in Section 2.1. We consider a crack in an elastic material, the tip of which is touching a
wedge of radially inhomogeneous material of angle 2(n— ff) at the vertex (Fig. 4). The
iterative solution to this can be deduced, for a < 0, as

o((G5-2)3) )

¢y ~ By e 72 7 + (46)
n n n n
(G-)5) = ((G-)5) )
¢~ B, r"/z”cosz—%(n—ﬂ)
12
S5~ g (((ﬂ —-a) _’f_) (n_ﬁ))_n_
28 28 28 @7

+ T n n \/? n n \/? T
s (552G <)) o= ((55-2)55) -0

in the limit as § — /2 there is no stress singularity. We can compare this to the asymptotic
n=p

2(x-B)

Fig. 4. Crack touching a radially inhomogeneous wedge.
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non-linear power law results deduced by Atkinson and Champion (1994), a full comparison
is made in Section 4.

3. INVARIANT INTEGRALS

One theme of this paper has been a simple model of the near crack tip behaviour at
an interface between two materials whose constitutive behaviour satisfy a non-linear power
law stress—strain relation. This non-linear behaviour at the crack tip is modelled by means
of a linear elastic model with radially varying elastic modulus of power law type. Qualitative
agreement between the singular near crack tip stress fields of the two models can be
demonstrated and as shown in the previous section this enables a complete analysis to be
made. In the full non-linear problem only an asymptotic analysis is available as in Champion
and Atkinson (1990). To further illustrate the similarity between the two formulations, and
notice some dissimilarities we derive here some invariants for the two sets of equations and
consider their application to the problem at hand.

Firstly, the reciprocal theorem

j (oyu% —o%u)n;dS = 0, (48)
A

where S is a closed surface and the vector #; is the outward pointing normal, we assume
there are no body forces enclosed within S. The reciprocal theorem still holds, of course,
for the spatially varying inhomogeneous elastic problem. The starred and unstarred fields
are two independent solutions of the governing equations enclosed by a surface S.

However, for the non-linear material considered in Champion and Atkinson (1990)
where

oy = poUaptts) "™ Uy, Kk j=1,2 (49)

with the usual summation convention and x; representing the Cartesian coordinates, no
such reciprocal theorem can be deduced.

For the non-linear constitutive law (49) well-known invariants exist, for such a material
the energy density is

= Z% (ua,kua,k)("+ bz, (50)
Thus, following Eshelby (1951) we can define the energy momentum tensor P, as

Py= Wé;—oyus;, jl=12 (51

it is clear from a direct calculation that Pj;; = 0 and hence the integrals
N

are invariant when S is a surface enclosing no singularities. Other invariants can be deduced,
one which is due to the invariance of the equations in radial changes of scale is

n—1
M= J; (x,P,j+ <m>a3ju3)nde. (53)

Because of the spatial inhomogeneity of the simple linear model which has the form
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0y = Hor'us;, where r’=xx, k=12, (54)

it is now shown that no invariant similar to F, above exists. Nonetheless, as the governing
equation

0'31',!' = (r“u3,j),j =0 (55)

is invariant due to radial changes in scale, we can construct an integral of the type usually
designated by M. For this medium the energy density is given by

W= % FUs M. (56)

We define P;; as in (51), then it is clear that
x 00— 2
Py;= iﬂoxlr Uz plUs k- (57

Therefore if « # 0 no invariant similar to F, exists. We now define M as

M= j (x,P,,.— gu,agj)n,ds (58)
S

which is invariant for any surface enclosing no singularities.

4. CONCLUSION

We have shown how a combined Mellin transform-difference equation method can be
used to solve problems of cracks at an interface between a constant modulus elastic material
and a material with a radially varying elastic modulus. These results are compared with the
analysis of the non-linear case of an elastic medium bonded to a medium with a power law
stress—strain curve. The main results are as follows.

4.1. Bimaterial interface cracks

(A) The non-linear cases : medium 1 has a stress—strain law where o = d¢” (0 constant),
and medium 2 is linear elastic and has an elastic modulus of unity.

e If n > 1 the leading term in the stress of either medium on the welded boundary has
the form ¢ ~ A9(@)r~ "2+ ---, where the 49(8) are functions of 6 appropriate to each
medium. These become equal on @ = 0 to a constant value depending on the precise loading
conditions. The displacements are given to leading order as

2~ a®O)F, )~ aO(@)r -, (59)

The functions 4?(6), a®(8) and some higher order terms are given in Champion and
Atkinson (1990).

e If 0 < n < 1 the leading term in the stress of either medium on the welded boundary
has the form ¢{) ~ A?()r "+t ... The leading order behaviour of the displacements
can be determined as

¢2 ~ a(Z)(g)rI/(n+ l), ¢1 ~ a(l)(ﬁ)r"/("* l), (60)

where once again the functions 49(8), a?(6) can be determined.

(B) The inhomogeneous model problem considered : medium 1 has an elastic modulus
of u,r*, and medium 2 has an elastic modulus of u,.

e If o < 0 then to leading order the stress, 6,, ~ Ar~'/? and the displacements are
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¢, ~ BPri2cos {0+m), ¢, ~ BO@)r'ii—= (61)

the function B‘"() can be determined explicitly.
e If 0 < « < 3/4 then the stress, 6,, ~ Ar'Y"+*~! and the displacements are

¢y~ BOOW e, P, ~ BV cos Yn—6). (62)

The variable A" is given by AV = {(—a+ (@2 +1)/?).

The two models have very similar crack tip behaviour. In both cases the stress singu-
larity at the crack tip is the same as that of a crack in a single material with the more
singular stress-strain law. The displacements in each half space have similar behaviour in
the analogous cases, although we note that the analogy o = [— (n— 1)/(n+1)] is not exact.
In this, as in our simple inhomogeneous model, we have ignored any 6 variation in the
shear modulus. Nonetheless, the main characteristics exhibited by the non-linear problem
are also shown by the inhomogeneous model problem thereby showing that some of the
phenomena associated with the power law model are due to the apparent modulus variation.
In the case when 0 < a < 3/4, the analogy appears to hold quite strongly, if we take
o = [—(rn—1)/(n+1)], as a simple comparison of the effective moduli would suggest, then
the relative difference between the powers of r in the different half spaces for (60) and (62)
are the same. If we further take AV = (1 —«), the powers of r in (60) and (62) would
correspond exactly.

We also verify that the asymptotic method used by Champion and Atkinson (1990) in
their analysis of the nonlinear interfacial crack can be used for the radially inhomogeneous
problems and that it gives the correct answers when compared with an exact analysis. The
exact analysis of the problem identifies the coefficient of the leading order stresses and
displacements at the crack tip and provides an example of a problem which is solved using
Mellin transform and difference equation techniques.

4.2. Cracks against interfaces

To study this case we considered in Section 2.3 the situation shown in Fig. 4. A
crack lying in a homogeneous elastic material meets at its vertex a wedge of radially
inhomogeneous material, u(r) = r* (a < 0) of included angle 2(x—B), (8 < n/2). Let us
compare the main results of Section 2.3 with corresponding results for the non-linear
(o ~ €") case, these have been obtained by Atkinson and Champion (1994). There the
inhomogeneous medium above is replaced by ¢ ~ ¢", n > 1 corresponding to u(r) ~ r*%
o < 0. The main results are

(A) The non-linear case: medium 1 has a stress—strain law of ¢ = B¢" (§ constant) and
medium 2 is linear elastic. The leading terms in the stress match on the wedge boundary,
but the corresponding leading terms in the displacement have different powers of r (mea-
sured from the crack tip). It is then deduced that the leading term in the displacement in
the elastic medium must be identically zero on the wedge boundary. Thus, in the elastic
material the displacements in the neighbourhood of the crack tip are

by~ Bzr<"/2ﬂ>cos5’%(n—0), n—f<b<n (63)

and in the non-linear material
¢\ ~ Kyr'T1e=2020E6), 0< 0 < B, (64)

where F5(0) = 0 and the function F,(f) is given in an implicit form in Atkinson and
Champion (1994). The coefficient K, is determined in terms of B, from matching the
traction stresses on the wedge boundary. Higher terms in this expansion are given in
Atkinson and Champion (1994). It should be noted that we assumed f > n/2 here. If
B = n/2 the exponent of the power of r in both ¢, ¢, is unity, so it looks like no singular
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stresses are obtained. However a more careful investigation may be required in this limit.
We have given results for 0 < 8 < = only; note that the displacement field is antisymmetric
about § = 0. :

(B) The inhomogeneous model problem considered : medium 1 has an elastic modulus
of r* and medium 2 has a constant elastic modulus. We take « < 0, then using the iterative
approach we obtain in the elastic material

by~ Bzr”’zﬂcoszl%(n-—f))+ (65)

and in the radially inhomogeneous material

(G
(G =G

As the asymptotic variable separable method used by Champion and Atkinson (1990) leads
to the correct solution in the inhomogeneous interface problem, we conclude that the
approach is well founded. Earlier analysis of the plane strain non-linear interface problems
by Shih and Asaro (1988) had concluded that variable separable solutions of these non-
linear problems probably did not exist. As the asymptotic method of Champion and
Atkinson (1990) which led to variable separable solutions is not rigorous, it is reassuring
that for the closely related inhomogeneous interface problem the method works exactly.
We should note that in this paper we have considered only anti-plane problems and that
Champion and Atkinson (1991) have extended their asymptotic analysis to the plane strain
interface problems. Recently Sharma and Aravas (1993) have extended the asymptotic
work of Champion and Atkinson (1991) to determine higher order terms, furthermore they
verify (numerically) that the asymptotic results are correct.

It is likely that in plane strain a similar analogy with a radially inhomogeneous elastic
material exists, although the analysis would become much more complicated.

b1~ By (66)
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APPENDIX: THE SOLUTION OF FIRST-ORDER LINEAR DIFFERENCE EQUATIONS

In this appendix we briefly present some of the technical results required for the solution of the first order
difference equations used in the text. Take a homogeneous difference equation

A(s+a) = F(s)A(s). (Al)

If F(s) is just a simple trigonometric function, one can deduce the solution merely by inspection and using the
appropriate properties of Alexeiewsky’s function (or the double gamma function if necessary). The solution thus
deduced will be arbitrary up to a multiplicative constant of period one which is fixed from the physical constraints
of the problem. However, when the function F(s) is more complicated one can proceed as in Barnes (1904) by
decomposing F(s) into its Weierstrass products. This can then be written in terms of an infinite product of
gamma functions with appropriate exponential convergence factors. This is somewhat unwieldy and tedious, the
exponential convergence factors required are awkward to derive. Stoker (1957) solved g¢-difference equations,
these are analogous to linear difference equations, using a Cauchy integral technique. To apply this technique to
linear difference equations requires a simple change of variable. However, the method is less direct and requires
some complicated arguments, the Hilbert method is more direct and leads to a solution which is in a form where
the solution properties can be simply deduced. A recent application of the method given in Stoker’s book is in
Ehrenmark (1992) where a homogeneous difference equation is solved. An alternative would be to evaluate the
difference equation by looking at the position and order of its poles and zeros. However, it is more convenient to
treat it as a Hilbert problem and use methods based on the Plemelj formulae, i.e. Bantsuri (1973). Without loss
of generality we can rewrite (Al) as

X(s+a) = K(s) X(s), (A2)

where K(s) — 1 [and log K(s) is such that the integral in (A7) converges] as |s| — oo in the strip —a < R(s) < a.

This is done by determining the asymptotic behaviour of F(s) and then letting A(s) = H(s)X(s) with
K(s) = H(s)F(s)/ H(s+a). The function H(s) being chosen by inspection. Let us define

X(s)=Y(s), 0<R(E) <a. (A3)

We take Y(s) to be a sectionally holomorphic function in the strip cut along the imaginary axis and to be a
function of period a. It is then simple to deduce that

X(s) = Y(5)/K(5), —a<R() <O. (Ad)

Now X(s) is continuous across the cut, so we define the functions with subscript plus (and minus) to denote the
limiting value of the function as it approaches the cut from the left (right). We deduce the following Plemel;j
formulae for the periodic function ¥(s)

log Y, (s)+log Y_(s) = 2log Y,(s) (A5)
log Y, (s) ~log Y_(s) = log K(s) (A6)

hence
log Y,(s) = Ez_& Jm cotn(%i)log K(H dt (A7)

with this integral taken to be Cauchy principal valued. The integral (A7) is the usual Cauchy integral formula
mapped into a strip with periodicity conditions assumed. The solution is unique for log Y,(s) under the assumption
that Y(s) tends to 1 as |s| — oco. We note that with the above definition of K(s), log K(s) is continuous on the
imaginary axis and we assume it satisfies a Holder condition on the line and at infinity. Having found the solution
to the first-order difference equation in the strip —a < R(s) < a it is a simple manner to shift this strip to the left
or right using (A1) thereby recovering the solution for any s.

A similar method can be used for the particular solutions of the inhomogeneous difference equations; for
the difference equation

Ao(s+a)—Aqls) = f(s) (A8)
we have the result that
Ag(s) = 1 [ n(t—s)
o) = % . f@ cot—a—dt, 0<RE) <« (A9)
Aus) = 1 {= n(t—s)
o) = 3 f(®cot 5 dr—f(s), —a<R(E) <0 (A10)
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The above integrals are Cauchy principal valued. If f(s) has exponential growth at infinity these integrals diverge.
However, as we require A,(—1) —A4,(0), say, the resulting integrals converge.

The above formulae are related to the product and sum split formulae used during the application of the
Wiener—-Hopf technique (Nuller, 1976). If we take the limit & — oo the two strips, —a < R(s) <0, 0 < R(s) < «
tend to two half planes and the periodic function Y(s) becomes sectionally holomorphic in each half plane. The
formulae for X(s) and for 4,(s) are then the familiar equations for splitting a function into either a product or
sum of functions analytic in each half plane. The imaginary axis becomes a line of common analyticity for
the functions defined in each half plane and this allows the Wiener—Hopf procedure to be followed. The limit as
o — — oo can be considered in a similar manner.



